UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 8-K

CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of report (Date of earliest event reported): January 6, 2021

GALERA THERAPEUTICS, INC.

(Exact name of registrant as specified in its charter)

Delaware (State or other jurisdiction of incorporation or organization)

001-39114 (Commission File Number)

46-1454898 (I.R.S. Employer Identification No.)

2 W Liberty Blvd #100 Malvern, PA 19355 (Address of principal executive offices) (Zip Code)

(610) 725-1500 (Registrant's telephone number, include area code)

(Former Name or Former Address, if Changed Since Last Report)

Cha	ck the appropriate box below if the Form 8-K filing is into	and ad to simultaneously satisfy the fi	ling abligation of the registrant under any of the			
	owing provisions:	ended to simultaneously satisfy the fi	ling obligation of the registrant under any of the			
	Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)					
	Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)					
	Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))					
	Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))					
	Securities registered pursuant to Section 12(b) of the Act:					
	Title of each class	Trading Symbol(s)	Name of each exchange on which registered			
(Common Stock, \$0.001 par value per share	GRTX	The Nasdaq Global Market			
	cate by check mark whether the registrant is an emerging oter) or Rule 12b-2 of the Securities Exchange Act of 193-		405 of the Securities Act of 1933 (§230.405 of this			
Eme	erging growth company 🗵					

merging growth company 🗵

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act.

Item 7.01. Regulation FD Disclosure.

Galera Therapeutics, Inc. (the "Company") from time to time presents and/or distributes to the investment community at various industry and other conferences slide presentations to provide updates and summaries of its business. On January 6, 2021, the Company posted an updated corporate slide presentation in the "Investors" portion of its website at www.galeratx.com. A copy of its current corporate slide presentation is attached to this Current Report on Form 8-K as Exhibit 99.1. The Company undertakes no obligation to update, supplement or amend the materials attached hereto as Exhibit 99.1.

The information contained in Item 7.01 of this Form 8-K (including Exhibit 99.1 attached hereto) shall not be deemed "filed" for purposes of Section 18 of the Securities Exchange Act of 1934, as amended (the "Exchange Act"), or otherwise subject to the liabilities of that section, nor shall it be deemed incorporated by reference in any filing under the Securities Act of 1933, as amended, or the Exchange Act, except as expressly provided by specific reference in such a filing.

Item 9.01. Financial Statements and Exhibits.

(d) Exhibits

The following exhibit relating to Item 7.01 shall be deemed to be furnished, and not filed:

Exhibit

No. Description

99.1 <u>Corporate Slide Presentation of Galera Therapeutics, Inc. dated January 6, 2021</u>

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Date: January 6, 2021

GALERA THERAPEUTICS, INC.

By: /s/ J. Mel Sorensen, M.D.

J. Mel Sorensen, M.D.

President and Chief Executive Officer

Transforming Radiotherapy

with

Dismutase Mimetics

January 2021

Disclaimers and Forward-Looking Statements

Certain information contained in this presentation and statements made orally during this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and Galera's own internal estimates and research. While Galera believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. While Galera believes its internal research is reliable, such research has not been verified by any independent source.

This presentation contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our clinical results and other future conditions. All statements other than statements of historical facts contained in this presentation, including statements regarding future results of operations and financial position, business strategy, the safety, efficacy, regulatory and clinical progress, and therapeutic potential of current and prospective product candidates, plans and timing for the commencement of and the release of data from clinical trials, our plans to prepare for commercialization and a US launch, the anticipated direct and indirect impact of COVID-19 on Galera's business and operations, planned clinical trials and preclinical activities, potential product approvals and related commercial opportunity, current and prospective collaborations, and timing and likelihood of success, plans and objectives of management for future operations, are forward-looking statements. The words "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "estimate," "believe," "predict," "potential" or "continue" or the negative of these terms or other similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

The information in this presentation, including without limitation the forward-looking statements contained herein, represent our views as of the date of this presentation. Although we believe the expectations reflected in such forward-looking statements are reasonable, we can give no assurance that such expectations will prove to be correct. Accordingly, readers are cautioned not to place undue reliance on these forward-looking statements. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. No representations or warranties (expressed or implied) are made about the accuracy of any such forward-looking statements. The forward-looking statements in this presentation involve risks and uncertainties that could cause actual results to differ materially from those reflected in such statements. Risks and uncertainties that may cause actual results to differ materially include uncertainties inherent in the drug development process and the regulatory approval process, our reliance on third parties over which we may not always have full control, and other important risks and uncertainties that are described in Galera's Quarterly Report on Form 10-Q for the quarterly period ended September 30, 2020 filed with the U.S. Securities and Exchange Commission (SEC), Annual Report on Form 10-K for the year ended December 31, 2019 and Galera's other filings with the SEC. New risk factors and uncertainties.

Whenever the Company uses the terms "transform radiotherapy" or "transforming radiotherapy" in this presentation, it is referring to its mission statement.

Superoxide Dismutase Mimetics - Vision

Rapid elimination of Superoxide (02)

Normal tissue toxicity limits optimal radiotherapy treatment of tumor Over half of cancer patients receive radiotherapy as part of their care^{1, 2}

Increase H₂O₂ in tumors

Radiotherapy is SoC for many local tumors but need remains for greater efficacy

Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment... Cancer. 2005;104:1129-1137

² Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239-253

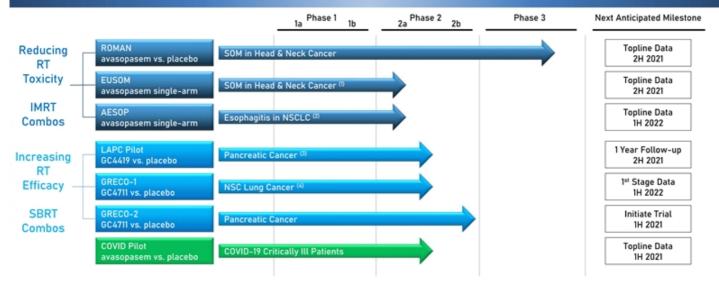
Corporate Highlights

Reducing IMRT Toxicity Phase 3 ROMAN Results with Avasopasem

- · Severe Oral Mucositis in Head & Neck Cancer
- Robust Phase 2b data → Breakthrough Therapy Designation

Increasing SBRT Efficacy Complete Survival Results from Pancreatic Cancer Pilot

- . 1-Year data on all patients from randomized LAPC trial
- Promising data from this trial was presented in 2020


Planning US Launch Large Market Opportunities with High Unmet Medical Need

- . Building commercial team for US launch of avasopasem
- US Target Patient Population of Lead Indication is 42,000

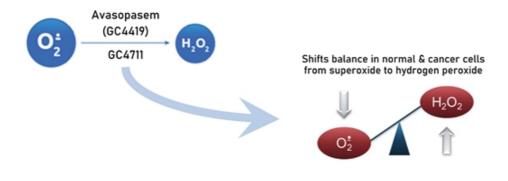
Clinical Stage Pipeline

- (I) EUSOM is a single-arm multi-center trial evaluating the safety of avasopasem in patients with HNC in Europe.

 (2) Phase 2s trial in patients with tung cancer building on avasopasem safety and tolerability findings from SOM trials in patients with HNC.

 (3) This first SBRT combination trial used OC449 (avasopasem). Observations from this pilot trial have been used to guide development of OC4711 to assess anti-cancer efficacy in co.

 (4) Two stage trial with first stage to assess anti-cancer efficacy of SBRT and checkpoint inhibitor -/- OC4711.


Unique Technology

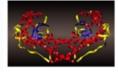
Dismutase Mimetics

Small Molecule Enzyme Mimetics

- Mimic human superoxide dismutase (SOD) enzymes
- Rapidly convert superoxide (0¹₂) to hydrogen peroxide (H₂O₂)

02 more damaging to normal cells than cancer cells

H₂O₂ more toxic to cancer cells than normal cells


Galera's Dismutase Mimetics

Native SOD Enzymes

Native SOD Enzymes

- Overexpression reduces RT toxicity
- . Large size, immunogenicity & short half-lives limit bioavailability
- Inactivation/inhibition by reactive oxygen species

Small Molecule Mimetics

Challenge: suitable small molecule dismutase mimetics

- Fast catalytic rates & high selectivity for superoxide
- Firmly hold manganese in macrocyclic ring
- Stable, safe & suitable for manufacturing

Dismutase Mimetics Core Structure Pentaaza Macrocycles

Small Molecule Dismutase Mimetics with Attractive Drug Characteristics

Speed

Selectivity

Stability

Well-tolerated

Synthesis

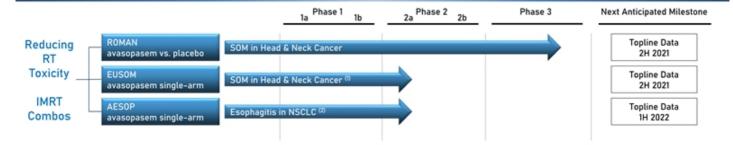
Comparable to native SODs (2x10⁷ molecules per sec) Interact with superoxide alone, not other reactive oxygen species

Firmly hold Mn atom in macrocyclic ring

preclinically and clinically

Safety

Efficient & cost-effective manufacturing process



Reducing IMRT Toxicity (Intensity Modulated Radiotherapy)

Reducing IMRT Toxicity - Large Unmet Medical Need

	US Target Patient Population			
Cancer	Annual Incidence	Target Indication	Subset	Patients
Head & Neck Cancer	65,000	Severe Oral Mucositis	Locally Advanced	42,000
NSC Lung Cancer	175,000	Esophagitis	Central Tumors	50,000

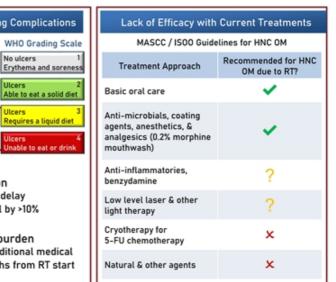
⁽¹⁾ EUSOM is a single-arm multi-center trial evaluating the safety of avasopasem in patients with HNC in Europe.
(2) Phase 2a trial in patients with lung cancer building on avasopasem safety and tolerability findings from SOM trials in patients with HNC.

Severe Oral Mucositis in HNC - Large Unmet Medical Need

Large Target Patient Population (42K)

- ~65,000 new HNC patients in US/Year
- ~65% get IMRT & cisplatin as standard-of-care
- ~70% of patients get SOM (can't eat)
- ~20-30% get Gr. 4 (can't eat or drink)
- No approved drug available

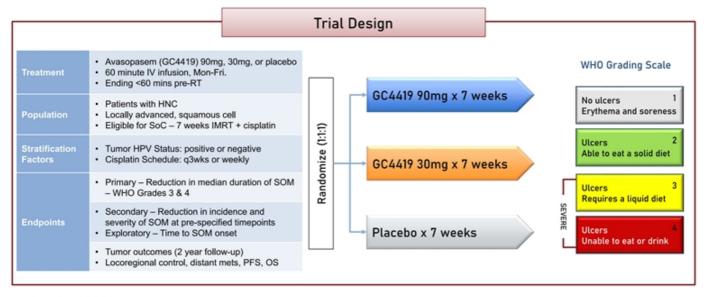
42,000


SOM Can Have Devastating Complications

No ulcers

Able to eat a solid diet

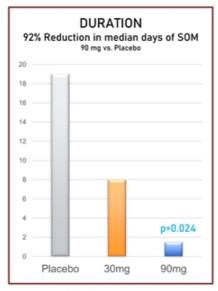
Requires a liquid diet

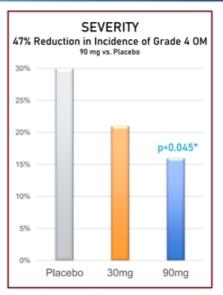

- Dehydration & Malnutrition Often requiring PEG tube feeding
- Pain Often severe pain requiring opioids
- Treatment interruption Each week of treatment delay decreases tumor control by >10%
- Increased economic burden OM Dx → ~\$32,000 in additional medical expenses in first 6 months from RT start

GT-201: 223-Patient Randomized Phase 2b OM Trial

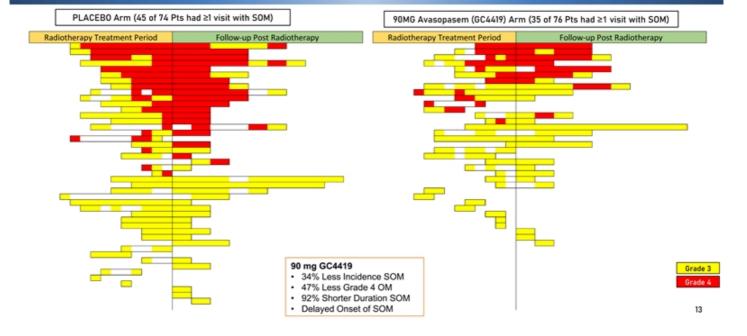
Supportive trial to the ROMAN Phase 3 for the NDA



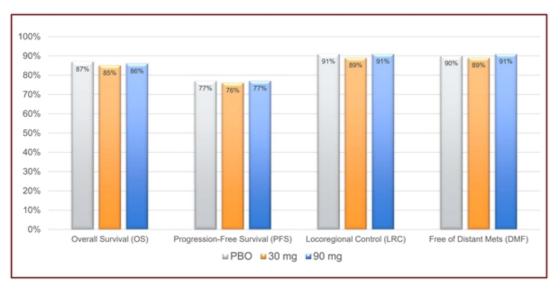

Anderson et al, JCO, 2019


Consistent Efficacy Across All SOM Parameters

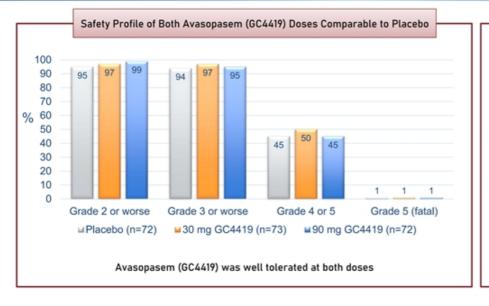
And consistent dose response: 90mg > 30mg



Primary endpoint was duration - defined as # days from P* occurrence of grade 3 or 4 SOM until the P* event of grade 2 or less (there being no subsequent grade 3 or 4 events.)
*Secondary endpoints (incidence and severity.) have nominal p values compared to placebo
ITT * Intent-To-Treat population (n*223)

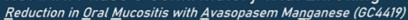

Efficacy Parameters Better on 90mg arm Compared to Placebo Swimmers plot: each patient who developed at least one SOM episode is represented by a row

Tumor Outcomes Maintained - 2 year follow-up

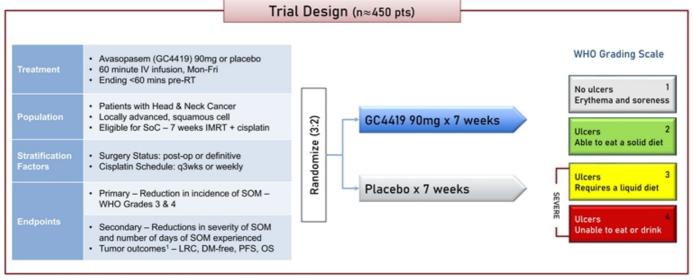


Final ITT Analysis

OS = Overall Survival, PFS = Progression-Free Survival, LRC = LocoRegional Control, DMF = Free of Distant Metastas.


with SoC cisplatin - RT regimen			
Most Frequent AEs (any grade)	Placebo (n=72)	30 mg GC4419 (n=73)	90 mg GC4419 (n=72)
Lymphopenia	89%	92%	88%
Nausea	75%	68%	82%
Fatigue	69%	60%	65%
Oropharyngeal pain	64%	63%	61%
Constipation	53%	59%	64%
Radiation skin injury	47%	51%	53%
Vomiting	47%	52%	49%
Dysgeusia (taste)	49%	55%	43%
Dysphagia	43%	42%	47%
Weight decreased	35%	40%	44%
Oral candidiasis	29%	45%	43%
Leukopenia	39%	37%	39%

Most frequent AE's are those expected


Anderson et al, J Clin Oncol 2019 Dec 1; 37(34):3256-3265

,

ROMAN: Phase 3 Confirmatory Trial Enrolling

LRC = locoregional control, DM-free = free of distant mets, PFS = Progression-Free Survival, OS = Overall Survival

RT-related Mucositis Beyond Head and Neck Cancer

Radiotherapy-related Esophagitis in Lung Cancer

- SOM efficacy seen by radiation oncologists as supportive for esophagitis¹
- ~50,000 lung cancer patients are treated with RT, 50% get ≥ Grade 2 esophagitis²
- Effects: inability to swallow, severe pain, ulceration, bleeding & hospitalization

Compendial Listing AESOP: Phase 2 to support Compendial Listing post-Approval for SOM

- Single-arm Phase 2a trial in 60 patients w/ locally advanced lung cancers
- Standard IMRT to ≥ 5 cm of esophagus (30 fractions, 2Gy/day x5 for 6 weeks)
- Post approval for SOM in HNC, plan to seek compendial listing in U.S.

Market Research Question Patients with Other Conditions¹

Given the demonstrated ability of <u>Product X</u> to prevent radiation-induced toxicities in the oral mucosa, please indicate how you might use (maximum %) Product X for the following radiation associated conditions?

¹Galera Market Research (150 Radiation Oncologists) ² NCI or RTOG grading scales Patients at risk of experiencing radiation induced esophagitis

Large Commercial Opportunities Addressing Clear Unmet Needs Severe Oral Mucositis & Esophagitis

Severe Oral Mucositis Head & Neck Cancer

42k Patients

Radiation oncologists report severe oral mucositis is most burdensome side effect of HNC RT treatment IMRT Centers Have Infusion Capabilities

77% of Centers1

37% IMRT centers currently infuse drugs

Additional 40% coordinate with medical oncology to infuse patients SOM Common and Costly

~\$32,000

Patients with OM incur ~\$32,000 more in medical expenses in first 6 months from start of RT

Current approaches inadequate – while frequently used, only 1 in 5 believe they are useful Targeted Salesforce in U.S.

~40 Reps

Focused commercial infrastructure

~2,500 RT sites in US ~60% of patients are treated in ~500 centers² Esophagitis in Lung Cancer

50k Patients

50% IMRT Patients get ≥ Grade 2 esophagitis³

SOM efficacy seen by radiation oncologists as supportive for esophagitis⁴

Primary market research with 67 IMRT centers in the US *Medicare Claims Analysis by Galera in 2019 *NCI or RTOG grading scales, *Galera Market Research (150 Radiation Oncologists), SOM * Severe Oral Mucositis



Increasing SBRT Efficacy (Stereotactic Radiotherapy)

Increasing SBRT Efficacy- Large Unmet Medical Need

US	1
Market	
Potential	/

	US Target Patient Population			
Cancer	Annual Incidence	Subset	Patients	
Pancreatic Cancer	57,000	Locally-Advanced LAPC	18,000	
NSC Lung Cancer	175,000	Central Tumors or Peripheral >3cm	42,000	

This first SBRT combination trial used GC4417 (avasopasem). Observations from this pilot trial have been used to guide development of GC4711 to assess anti-cancer efficacy in combination with SBRT *Two stage trial with first stage to assess anti-cancer efficacy of SBRT */- GC4711 and the second stage to assess anti-cancer efficacy of SBRT and checkpoint inhibitor */- GC471

Unmet Medical Need with Limited Treatment Options in Pancreatic Cancer Locally Advanced Pancreatic Cancer (LAPC)

Lethal Common Cancer Increasing Number of Pancreatic Cancer Patients Diagnosed Each Year

- The most lethal common cancer: 5-year survival 9-13%^{1,2}
- . Over 30% present with locally advanced unresectable or borderline resectable

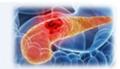
Novel Therapies Needed First Line Treatment is Induction Chemotherapy for Over 80% of Patients²

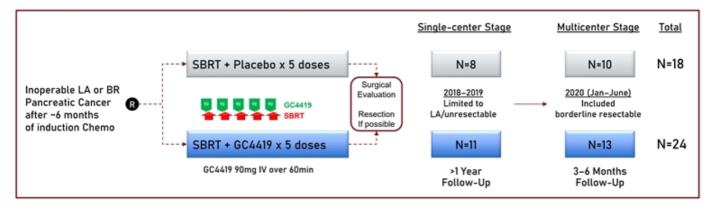
- 60% of patients fail induction therapy within 12 months³
- 60% on FOLFIRINOX develop Grade 3-5 toxicity³

SBRT is Accepted Tx Option SBRT Use is increasingly used for locoregional control (by NCCN and others)4

- 1st or 2nd line option after 4-5 months of chemotherapy for locally advanced cancer
- For some patients with metastatic disease for palliative control of local disease

¹ 2019 SEER Data ² Epidemiology of Pancreatic Cancer; Global Trends, Etiology and Risk Factors, Rawla P et al. World J Oncol. 2019 Feb; 10(1): 10–27.


² Suker M., Beumer B.R., Sadot E., Marthey L., Faris J.E., Mellon E.A. The Lancet Oncology. 2016;17(6):801–810. *NCCN = National Comprehensive Cancer Network-2019.

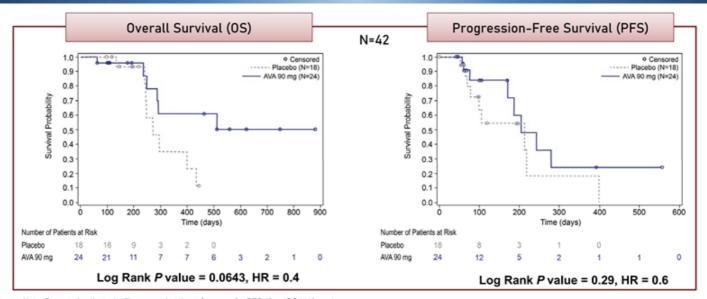

Pilot Phase 1/2 in Pancreatic Cancer: SBRT +/- GC4419

SBRT GC4419 Pilot Double-blind, Placebo-controlled, Randomized Trial

- Patients with Locally Advanced Pancreatic Cancer (LAPC) post ~6 mos chemo
- Optimal SBRT fraction selected based on 90-day safety/efficacy (LO-ET¹)
- Tumor outcome measures: ORR, LRC, DM, Resectability, PFS, OS

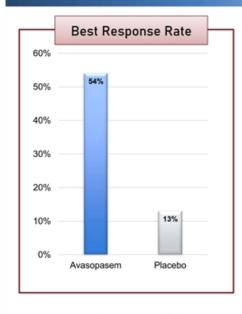
'LO-ET « Late-Onset Efficacy-Toxicity (Jin IH, Liu S, Thall PF, Yuan Y. J Am Stat Assoc 2014;109:525-36) SBRT « stereotactic body radiation therapy, LA « Locally Advanced, BR » Borderline Resectable ORR « Overall Response Rate, LRC » Locoregional Failure, DM » Distant Metastases, PFS » Progression-Free Survival, OS » Overall Survival

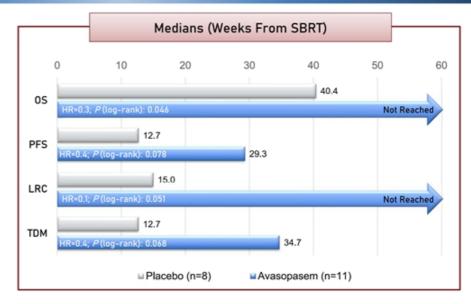
GC4419 Demonstrated Improved Local Tumor Response in SBRT Field Waterfall plot of best response through August 24, 2020; follow-up ongoing (ITT, n=42)



[†] Partial response per modified RECIST (Response Evaluation Criteria in Solid Tumors)

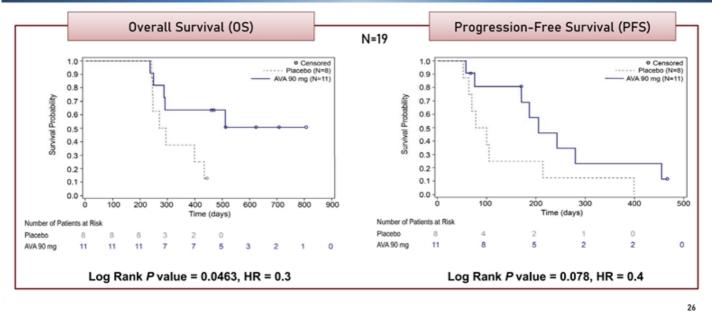
Encouraging Survival in All Patients (data as of Aug 24, 2020) Kaplan-Meier Analysis by Treatment (ITT, n=42)




Note: Resected patients (n=7) censored at time of surgery for PFS (5 on GC4419 arm)

AVA = GC4419 or Avasopasem

Favorable Efficacy Across Multiple Anti-Cancer Measures in Patients Followed for >1 Year (ITT, n=19)



HR = Hazard ratio; LRC = locoregional control; OS = overall survival, PFS = progression-free survival, TDM = time to distant metastases.

Encouraging Survival Maintained in Patients Followed for >1 Year Kaplan-Meier Analysis by Treatment (ITT, n=19)

AVA = GC4419 or Avasopasem

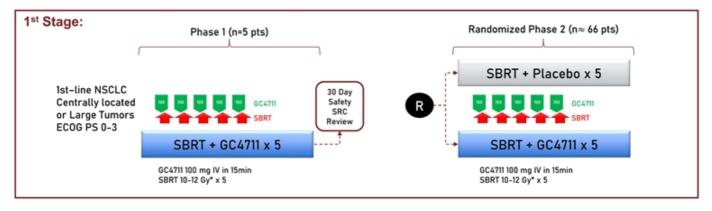
Safety - Grade 3+ Adverse Events (All Causes)

	Placebo (n=18)	Avasopasem (n=24)
Acute Adverse Events (up to 90 days post SBRT)		
Patients with acute Grade 3+ AEs*	4 (22%)	6 (25%)
Grade 3 acute GI toxicity**	2 (11%)	2 (8%)
Late Adverse Events (91 days–1 year post SBRT)		
Patients with late Grade 3+ AEs	5 (28%)	7 (29%)

*Only 1 patient > Gr. 3 (aspiration pneumonia, hypoxia & atrial fibrillation, resolved with supplemental O_3 antibiotics & beta blocker) **No bleeding ulcers by 12-week endoscopy, no GI toxicity > Grade 3

AE = adverse event; GI = gastrointestinal 27

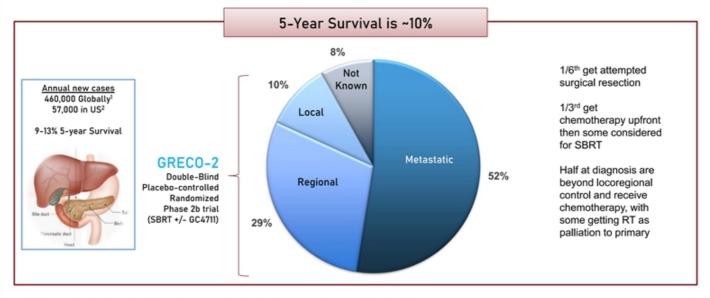

GRECO-1: Ongoing Phase 1b/2 Trial in Locally Advanced NSCLC Galera



SBRT GC4711 Combo Trial

Double-blind, Placebo-controlled, Randomized Trial after Short Phase 1

- NSCLC Locally Advanced Previously untreated (1st line)
- Objectives: Safety (reducing Pneumonitis), ORR, LRC, DM, PFS, OS
- Stage 1 to access SBRT +/- GC4711; Stage 2 SBRT + Checkpoint Inhibitor +/- GC4711



*SBRT dose is 10-12 Gy x 5, determined by SBRT Planning. GRECO = Galera Radiotherapy Efficacy Cancer Optimization, NSCLC = Non-Small Cell Lung Cancer; ECOG PS = Eastern Cooperative Group Performance Status

GRECO-2: Initiating Randomized Phase 2b Trial in LAPC

¹ 2019 SEER Data ² Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors, Rawla P et al. World J Oncol. 2019 Feb; 10(1): 10–27 GRECO • Galera Radiotherapy Efficacy Cancer Optimization

Corporate Highlights

Reducing IMRT Toxicity Phase 3 ROMAN Results with Avasopasem

- · Severe Oral Mucositis in Head & Neck Cancer
- Robust Phase 2b data → Breakthrough Therapy Designation

Increasing SBRT Efficacy Complete Survival Results from Pancreatic Cancer Pilot

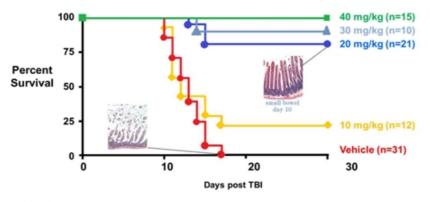
- . 1-Year data on all patients from randomized LAPC trial
- Promising data from this trial was presented in 2020

Planning US Launch Large Market Opportunities with High Unmet Medical Need

- . Building commercial team for US launch of avasopasem
- US Target Patient Population of Lead Indication is 42,000

APPENDIX

Back-up Preclinical Slides



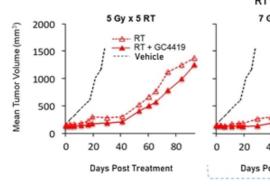
Dismutase Mimetics Reduce Radiation Toxicities

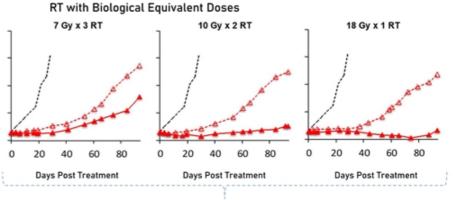
Reduce Radiation Mucositis Lethal dose of Total Body Irradiation (8.5 Gy) to mice

- 100% death on control, 100% survival with 40mg/kg
- . Main cause of death was intestinal mucositis

Thompson, et al., Free Radical Research, 44(5):529-540, 2010 Galera internal data

Dismutase Mimetics Increase Anti-Cancer Efficacy with High Fraction-Dose RT in Preclinical Models

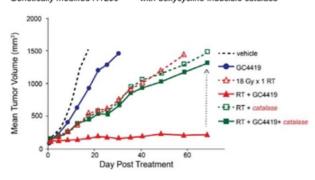




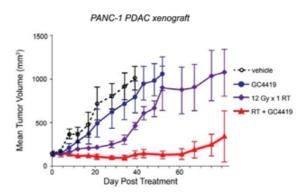
Focal irradiation of human tumor xenografts (H1299 NSCLC) in mice

- RT anti-cancer synergy of GC4419 increases with bigger RT fractions
- Bigger fraction → More 0½ → More H₂O₂
- Also demonstrated with human pancreatic cancer xenografts

Courtesy of M Story (UTSW)


SBRT Stereotactic Body Radiation Therapy

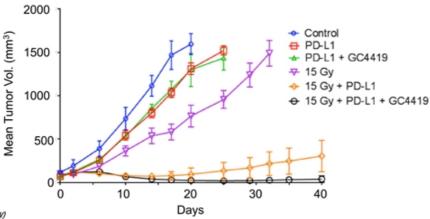
Increasing Anti-Cancer Efficacy via H₂O₂



Tumor tissue H₂O₂ reduced when doxycycline added, losing the synergy

Genetically modified $H1299^{\text{CAT}}$ – with doxycycline-inducible catalase

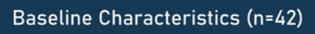
Larger RT fraction \rightarrow more O_2^{\bullet} Dismutase Mimetics \rightarrow more H_2O_2


Sishc et al, AACR, 2018 Sishc, et al, AACR Pancreatic Cancer, 2019

Dismutase Mimetics Also Enhance Immuno-Radiotherapy in Preclinical Models

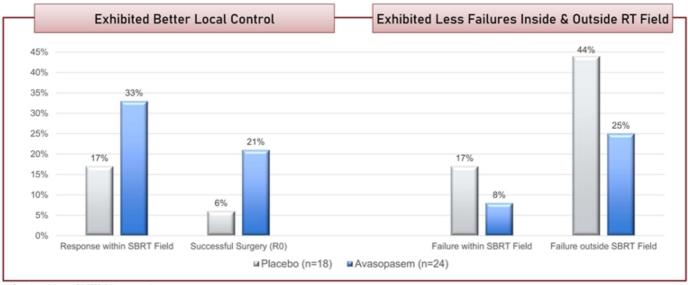
Increase IO + SBRT Efficacy SBRT + Checkpoint Inhibitor therapy of syngeneic tumors (LLC) in mice

- GC4419 enhances tumor response to SBRT + anti-PD-L1, PD-1 or CTLA-4
- . Also appeared to reduce metastasis & increase response in unirradiated secondary tumors



Courtesy of M Story (UTSW)

Back-up Pilot Phase 1/2 LAPC Trial Data



	Placebo (n=18)	Avasopasem (n=24)
Median age (range), yrs	68 (48–82)	72 (41–83)
Male/Female	7/11	16/8
Borderline resectable/Locally advanced	2/16	7/17
ECOG Performance status 0/1/2	9/9/0	12/11/1
Prior chemo, duration median (range), wks	21.9 (12.0–36.3)	17.9 (9.1–67.1)
CA19-9 at randomization, median (range)	26.25 (0.5–2186)	28.5 (0.3–70)
Smokers/Nonsmokers	3/15	2/22

ECOG = Eastern Cooperative Oncology Group Performance Status Criteria CA 19-9 = Carbohydrate Antigen 19-9 is a tumor marker for pancreatic cancer

SBRT + GC4419 Demonstrated Better Preliminary Outcomes Than SBRT + PB0

Data through August 24, 2020; follow-up ongoing

Response within SBRT Field = % of patients with partial response or better per Modified RECIST; Successful Surgery = % of patients with R0 margins post resection Failure within SBRT Field = % of patients with locoregional failure; Failure outside SBRT Field = % of patients with distant metastases

Patients Who Underwent Resection Post SBRT

Surgical Decision Based on Multiple Factors (n=7)

Treatment SBRT Arm	Initial Tumor Staging LA or BR		Margins Post Resection R0/R1		Histopath Analysis Post Resection		
	LA		R0		pCR		
		BR	R0				pPR
Avasopasem (n=5)		BR	R0				pPR
(11-3)		BR	R0				pPR
	LA		R0				pPR
Placebo		BR	R0				pPR
(n=2)	LA			R1		pNR	

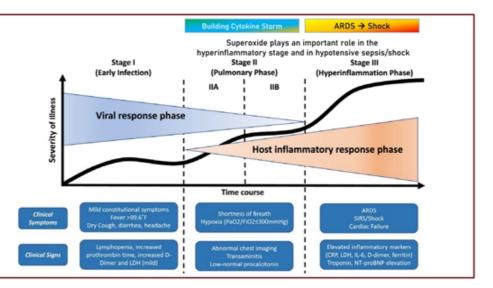
· No significant perioperative complications after SBRT for all 7 patients

LA/BR = locally advanced or borderline resectable; pCR/pNR/pPR = pathological complete, near, or partial response;RO/R1 = resectable results: R0 = clear margins, R1 = positive microscopic margins; SBRT = stereotactic body radiation therapy

Hazard Ratios on all Efficacy endpoints appear to favor GC4419 arm Comparison of Mature (n=19) and All Patients (n=42) – as of August 24, 2020

Comparison of Hazard Ratios (95% Confidence Intervals)	Initial Stage Pts (n=19)	All Patients (n=42)
Overall Survival (OS)	0.3 (0.09-1.05)	0.4 (0.12-1.11)
Progression-Free Survival (PFS)	0.4 (0.15-1.14)	0.6 (0.23-1.56)
Loco-Regional Control (LRC)	0.1 (0.01-1.37)	0.2 (0.02-2.22)
Time to Distant Mets (TDM)	0.4 (0.11-1.13)	0.4 (0.13-1.29)

COVID-19 Trial



Superoxide plays important role in Late Stages of COVID-19 Infection

Classification of COVID-19 disease states and potential therapeutic targets. The figure illustrates 3 escalating phases of COVID-19 disease progression, with associated signs, symptoms, and potential phase-specific therapies.

ARDS, acute respiratory distress syndrome; CRP, C-reactive protein; JAK, janus kinase; LDH, lactate dehydrogenase; NT-proBNP, N-terminal pro B-type natriuretic peptide; SIRS, systemic inflammatory response syndrome; GM-CSF, Granulocyte Macrophage Colony Stimulating Factor.

COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal Hasan K. Siddiqi, MD, MSCR, Mandeep R. Mehra, MD, MSc Published:March 20, 2020 DOI:https://doi.org/10.1016/j.healun.2020.03.012

Phase 2 Pilot Trial of Avasopasem in Patients with COVID-19

Randomized Placebo-Controlled Trial in Patients with Critical Illness (n=50)

Double-blind, Placebo-controlled, Randomized Trial

- Superoxide plays a central role in pathophysiology of acute respiratory distress syndrome (ARDS)
 - > Causes endothelial cell damage, increased microvascular permeability, peroxynitrite (0N00-)
- Galera's dismutase mimetics inhibited these effects in animal ARDS models

SSC = Standard Supportive Care, SOFA = Sequential Organ Failure Assessment
Salvemini, et al, Br. J. Pharmacology, 2001; Macarthur, et al, Crit Care Med, 2003; Cuzzocrea, et al, Crit Care Med, 2004; Ndengele, et al, Shock, 2005

Backup Commercial Slides

77% of the IMRT Centers Have the Ability to Infuse Today

	Adoption Archetype Determinants	RadOncs Enhance Capabilities to Administer GC4419 (Segment 1A)	RadOncs Add Capabilities to Administer GC4419 (Segment 1B)	MedOncs Administer GC4419 with RadOnc Coordination (Segment 2)	RadOncs Unlikely to Use GC4419 (Segment 3)
₾	GC4419 Infusion Owner	RadOnc	RadOnc	MedOnc	-
223	Patient Volume	1 нібн	1 HIGH	- MODERATE	- LOW
•	RadOnc IV Administration Capability	1 нібн	- row	- row	- row
Ch	MedOnc Infusion Constraints	- MODERATE	- MODERATE	- row	1 HIGH
\$0.	Ease of Coordination Today	- MODERATE	- MODERATE	↑ нібн	- row
áí	Likelihood to Rx GC4419	1 нібн	1 HIGH	MODERATE	Low
•	Total Sample Distribution (N)	37% (25)	14% (9)	40%	9% (6)
	24 (7 1107 1 - 1 - 1 - 1 - 1 - 1 - 1	Segment 1 infus	ion capacity and hence future	attitudes and behaviors with the needs to add capacity. These 2 cs where there is no difference	

Primary market research with 67 IMRT centers in the US

SBRT Commonly Used for Central and Peripheral NSCLC Tumors

2,500,000 NSCLC (World*)

175,000

NSCLC (US*)

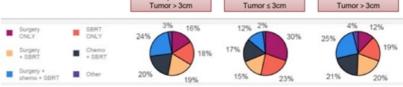
102,000

Potential Opportunity for SBRT + GC4711

NSCLC

Non-Small Cell Lung Cancer (NSCLC)

- Leading cause of cancer death in US 142,670 deaths in 2019*
- SBRT commonly used for smaller peripheral tumors
- Lung toxicity limits use in larger (>3cm) or centrally-located tumors


GC4711

GC4711 - SBRT Clinical Candidate

- Same mechanism of action as avasopasem (GC4419), with IV & oral forms
- Novel chemical entity with IP through 2036
- . Completed 14-day Phase 1 in healthy volunteers: 15-minute infusion

*Globocan & US SEER Data Decision Resources Group (DRG) Primary Market Research, Oct 2020